История
Для случая несжимаемой жидкости результат, эквивалентный современному уравнению Бернулли, был опубликован в 1738 году Даниилом Бернулли[K 1]. В современном виде интеграл был опубликован Иоганном Бернулли в 1743 году[11] для случая несжимаемой жидкости, а для некоторых случаев течений сжимаемой жидкости — Эйлером в 1757 году[12].
Интеграл Бернулли в несжимаемой жидкости
Полное давление | |
---|---|
Размерность | |
Единицы измерения | |
СИ | Дж/м3 = Па |
СГС | эрг/см3 |
Примечания | |
Постоянно вдоль линии тока стационарного течения несжимаемой жидкости. |
Для стационарного течения несжимаемой жидкости уравнение Бернулли может быть получено как следствие закона сохранения энергии. Закон Бернулли утверждает, что величина сохраняет постоянное значение вдоль линии тока:
Здесь
- плотность жидкости; —
- скорость потока; —
- — высота;
- давление; —
- ускорение свободного падения. —
Константа в правой части (может различаться для различных линий тока) иногда называется полным давлением[2]. Могут также использоваться термины «весовое давление» , «статическое давление» и «динамическое давление» . По словам Д. В. Сивухина[13], нерациональность этих понятий отмечалась многими физиками.
Размерность всех слагаемых — единица энергии на единицу объёма. Первое и второе слагаемое в интеграле Бернулли имеют смысл кинетической и потенциальной энергии, приходящейся на единицу объёма жидкости. Третье слагаемое по своему происхождению является работой сил давления (см. приведённый выше вывод уравнения Бернулли), но в гидравлике может называться «энергией давления» и частью потенциальной энергии[14]).
Вывод формулы Торричелли из закона Бернулли
Основная статья: Формула Торричелли
Иллюстрация формулы Торричелли
В применении к истечению идеальной несжимаемой жидкости через малое отверстие в боковой стенке или дне широкого сосуда закон Бернулли даёт равенство полных давлений на свободной поверхности жидкости и на выходе из отверстия:
где
- — высота столба жидкости в сосуде, отсчитанная от уровня отверстия,
- — скорость истечения жидкости,
- атмосферное давление. —
Отсюда: формула Торричелли. Она показывает, что при истечении жидкость приобретает скорость, какую получило бы тело, свободно падающее с высоты . Или, если истекающую из малого отверстия в сосуде струю направить вверх, в верхней точке (в пренебрежении потерями) струя достигнет уровня свободной поверхности в сосуде[15].
. Это —Другие проявления и применения закона Бернулли
Закон Бернулли объясняет эффект Вентури: в узкой части трубы скорость течения жидкости выше, а давление меньше, чем в широкой части
Приближение несжимаемой жидкости, а с ним и закон Бернулли справедливы и для ламинарных течений газа, если только скорости течения малы по сравнению со скоростью звука[16].
Основная статья: Эффект ВентуриВдоль горизонтальной трубы координата расходомера Вентури[17] и струйного насоса[1].
постоянна и уравнение Бернулли принимает вид . Отсюда следует, что при уменьшении сечения потока из-за возрастания скорости давление падает. Эффект понижения давления при увеличении скорости потока лежит в основе работыЗакон Бернулли объясняет, почему суда, движущиеся параллельным курсом, могут притягиваться друг к другу (например, такой инцидент произошёл с лайнером «Олимпик»)[18].
Применение в гидравлике
Основные статьи: Гидравлика, Гидравлические потери и НапорПоследовательное применение закона Бернулли привело к появлению технической гидромеханической дисциплины — гидравлики. Для технических приложений часто уравнение Бернулли записывается в виде, в котором все члены разделены на «удельный вес» :
где имеющие размерность длины члены в этом уравнении могут иметь следующие названия:
Напор[19] | |
---|---|
Размерность | |
Единицы измерения | |
СИ | метр |
Примечания | |
Полное давление, делённое на удельный вес. |
- [4] или напор[19], — гидравлическая высота
- нивелирная высота[4], —
- [4] или (в сумме с нивелирной высотой) гидростатический напор[19], — пьезометрическая высота
- [4] или скоростной напор[19]. — скоростная высота
Закон Бернулли справедлив только для идеальных жидкостей, в которых отсутствуют потери на вязкое трение. Для описания течений реальных жидкостей в технической гидромеханике (гидравлике) используют интеграл Бернулли с добавлением слагаемых, приближённо учитывающих различные «гидравлические потери напора»[19].
Интеграл Бернулли в баротропных течениях
Основная статья: БаротропностьУравнение Бернулли может быть выведено и из уравнения движения жидкости[K 2][K 3]. При этом течение предполагается стационарным и баротропным. Последнее означает, что плотность жидкости или газа не обязательно постоянна (как у предполагавшейся ранее несжимаемой жидкости), но является функцией только давления: , что позволяет ввести функцию давления[22] В этих предположениях величина
постоянна вдоль любой линии тока и любой вихревой линии. Соотношение справедливо для течения в любом потенциальном поле, при этом заменяется на потенциал массовой силы .
Вывод интеграла Бернулли для баротропного течения[показать]Для безвихревых баротропных течений, скорость которых может быть выражена в виде градиента потенциала скорости , интеграл Бернулли в виде [K 4] сохраняется также в нестационарных течениях, причём постоянная в правой части имеет одинаковое значение для всего течения[25].
Формула Сен-Венана — Ванцеля
Если в течении совершенного газа выполняется адиабатический закон[26]
то уравнение Бернулли выражается так[27] (вкладом от силы тяжести обычно можно пренебречь):
- вдоль линии тока или вихревой линии. Здесь
- показатель адиабаты газа, выражающийся через теплоёмкости при постоянном давлении и при постоянном объёме, —
- — давление и плотность газа,
- — условно выбранные постоянные (одинаковые для всего течения) значения давления и плотности.
С помощью полученной формулы находят скорость газа, вытекающего из сосуда с высоким давлением через малое отверстие. Удобно давление и плотность газа в сосуде, скорость газа в котором равна нулю, принять за Сен-Венана — Ванцеля[28]:
тогда скорость истечения выражается через внешнее давление по формулеТермодинамика закона Бернулли
Основная статья: ЭнтальпияИз термодинамики следует, что вдоль линии тока любого стационарного течения идеальной жидкости
где энтальпия единицы массы, — гравитационный потенциал (равный для однородной силы тяжести), — энтропия единицы массы.
Вывод закона Бернулли из уравнения Эйлера и термодинамических соотношений[показать] —Интеграл Бернулли применяют в инженерных расчётах, в том числе для сред, весьма далёких по своим свойствам от идеального газа, например для водяного пара, используемого в качестве теплоносителя в паровых турбин. При этом могут использоваться так называемые диаграммы Молье, представляющих удельную энтальпию (по оси ординат) как функцию удельной энтропии (по оси абсцисс) и например давления (или температуры) в виде семейства изобар (изотерм). В этом случае последовательность состояний вдоль линии тока лежат на некоторой вертикальной линии ( ). Длина отрезка этой линии, отсекаемого двумя изобарами, соответствующего начальному и конечному давлению теплоносителя, равен половине изменения квадрата скорости[31].
Обобщения интеграла Бернулли
Интеграл Бернулли также сохраняется при переходе потока через фронт ударной волны, в системе отсчета, в которой ударная волна покоится[32]. Однако при таком переходе энтропия среды не остаётся постоянной (возрастает), поэтому соотношение Бернулли является лишь одним из трёх соотношений Гюгонио, наряду с законами сохранения массы и импульса, связывающих состояние среды за фронтом с состоянием среды перед фронтом и со скоростью ударной волны.
Известны обобщения интеграла Бернулли для некоторых классов течений вязкой жидкости (например, для плоскопараллельных течений[33]), в магнитной гидродинамике[34], феррогидродинамике[35]. В релятивистской гидродинамике, когда скорости течения становятся сравнимыми со скоростью света , интеграл формулируется в терминах релятивистски инвариантных[36] удельной энтальпии и удельной энтропии[37].